

Efficacy and Safety Analysis of Lenacapavir With Broadly Neutralising Antibodies, Teropavimab and Zinlirvimab, in People With HIV-1 Highly Sensitive to One or Both Broadly Neutralising Antibodies

Susan J Little¹, <u>Paul P Cook^{2*}</u>, Kwad Mponponsuo³, Edwin DeJesus⁴, Gordon E Crofoot⁵, Hailin Huang³, Linda Gorgos⁶, Sean E Collins³, Joseph J Eron⁷

¹Division of Infectious Diseases, University of California, San Diego, CA, USA; ²East Carolina University, Greenville, NC, USA; ³Gilead Sciences, Inc., Foster City, CA, USA; ⁴Orlando Immunology Center, Orlando, FL, USA; ⁵The Crofoot Research Center, Houston, TX, USA; ⁶AXCES Research Group, Santa Fe, NM, USA; ⁷University of North Carolina, Chapel Hill, NC, USA

*Presenting author

HIV Drug Therapy Glasgow, November 10–13 2024, Glasgow, UK

Disclosures

Susan J Little reports grants/contract payments made to their institution from Gilead Sciences, Inc.

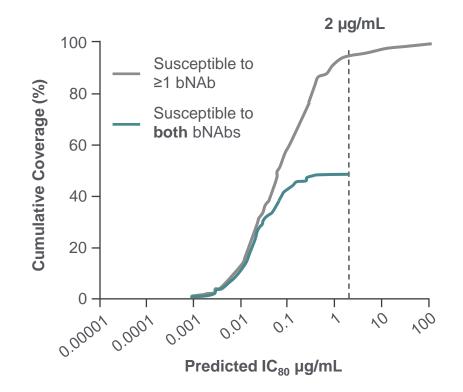
Paul P Cook reports grants/contract payments from Gilead Sciences, Inc., Janssen Pharmaceuticals, Lilly, Merck, National Institutes of Health, Seres Therapeutics, and ViiV Healthcare; and data safety monitoring or advisory board participation from Westat.

Edwin DeJesus reports grants/contract payments from AbbVie, Gilead Sciences, Inc., Merck, TeroTechnology/Taimed Biologic, and ViiV Healthcare.

Gordon E Crofoot reports grants/contract payments from AbbVie, Gilead Sciences, Inc., Janssen Pharmaceuticals, Merck, and ViiV Healthcare; and support for attending meetings from Gilead Sciences, Inc.

Linda Gorgos reports grants/contract payments made to their institution from Gilead Sciences, Inc., GSK, Merck, and ViiV Healthcare; and honoraria from the AIDS Education and Training Center – South Central.

Joseph J Eron reports grants/contract payments made to their institution from Gilead Sciences, Inc. and ViiV Healthcare; and consulting fees from Abbvie, Gilead Sciences, Inc., Merck, and ViiV Healthcare.


Kwad Mponponsuo, Hailin Huang, and Sean E Collins are all employees and shareholders of Gilead Sciences, Inc.

This study was funded by Gilead Sciences, Inc.

Background

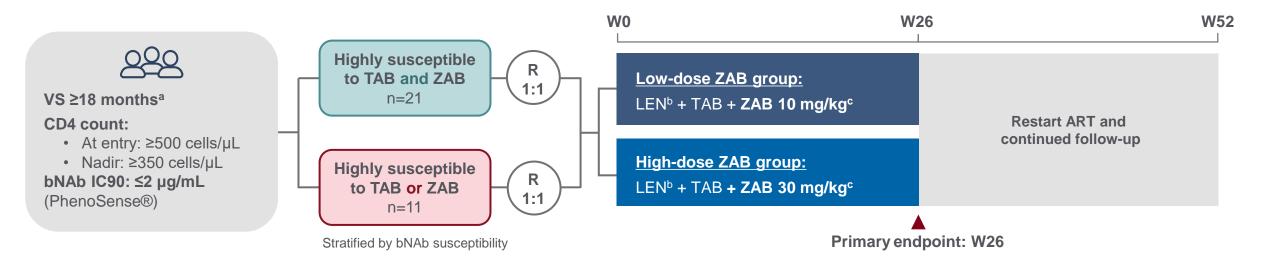
- Teropavimab (TAB) and zinlivimab (ZAB) are broadly neutralising antibodies (bNAbs)¹
 - TAB targets the CD4-binding site of gp120 and ZAB targets a non-overlapping epitope on the V3 glycan of HIV-1 Env¹
- ~50% of clade B viruses are highly susceptible to both TAB and ZAB with a 90% inhibitory concentration (IC₉₀) ≤2 µg/mL²
 - >90% are highly susceptible to either TAB or ZAB²
 - The optimal bNAb sensitivity threshold has not yet been established
- TAB and ZAB have extended half-lives that allow for dosing every 6 months¹

TAB and ZAB Susceptibility Breadth^a

3

 Lenacapavir (LEN), the first-in-class capsid inhibitor, can be administered subcutaneously (SC) every 6 months and is approved for the treatment of multidrug-resistant HIV-1³

^aEstimated coverage given predicted IC₉₀ closely resembles coverage given IC₈₀ shown here. Data from CATNAP CombiNAber using 479 clade B viruses.^{4,5} 1. Gautam R, et al. *Nat Med.* 2018; 24:610–6. 2. Selzer L, et al. CROI 2023; Poster 580. 3. Sunlenca[®] Summary of Product Characteristics, available at www.ema.europa.eu/en/documents/ product-information/sunlenca-epar-product-information_en.pdf (accessed October 2024). 4. Yoon H, et al. *Nucleic Acid Res.* 2015;43:W213-9. 5. Wagh K, et al. *PLoS Pathog.* 2016;12:e1005520

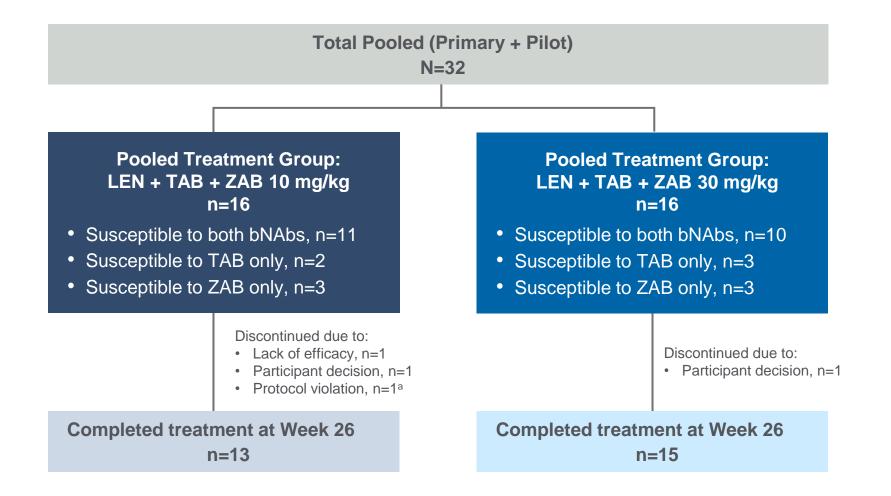

Objective

- We conducted a randomised Phase 1b study (NCT04811040)^{1,2} to assess the safety and efficacy of a single dose of LEN + TAB + ZAB in virologically suppressed people with HIV-1 (PWH) who were:
 - Highly susceptible to both bNAbs (primary cohort¹)
 - Highly susceptible to one of TAB or ZAB (pilot cohort²)

Here, we report pooled outcomes for both cohorts through Week 26, stratified by dose of ZAB

1. Eron J, et al. *Lancet HIV*. 2024;11:E146–55. 2. Eron J, et al. CROI 2024; Abstract 120. **bNAb**, broadly neutralising antibody; **LEN**, lenacapavir; **TAB**, teropavimab; **ZAB**, zinlirvimab.

Study Design



Week 26 pooled analysis outcomes:

- Efficacy at Week 26 by FDA Snapshot Algorithm
- Adverse events and laboratory abnormalities
- Anti-drug antibodies (ADAs)
- Pharmacokinetics of LEN, TAB, and ZAB

^aPrevious virologic failure was allowed if participants had VS (HIV-1 RNA ≤50 copies/mL) for ≥18 months prior to screening. ^bLEN 927 mg SC on Day 1, plus oral LEN 600 mg on Days 1 and 2. ^cTAB 30 mg/kg IV and ZAB 10 or 30 mg/kg IV on Day 1. **ART**, antiretroviral therapy; **bNAb**, broadly neutralising antibody; **IC**₉₀, 90% inhibitory concentration; **IV**, intravenous; **LEN**, lenacapavir; **R**, randomised; **SC**, subcutaneous; **TAB**, teropavimab; **VS**, virologic suppression; **W**, Week; **ZAB**, zinlirvimab.

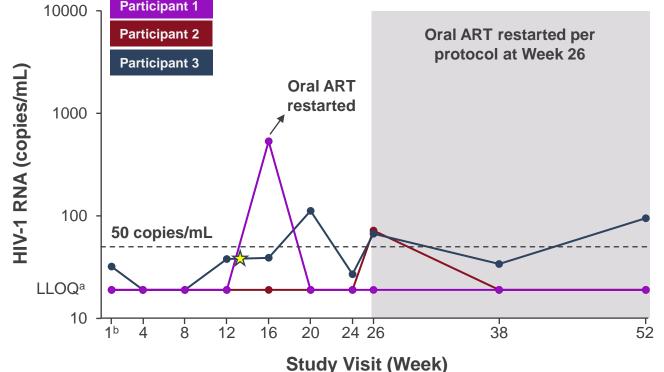
bNAb Susceptibility and Participant Disposition

^aDue to chronic hepatitis B virus infection; participant restarted antiretroviral therapy. **bNAb**, broadly neutralising antibody; **LEN**, lenacapavir; **TAB**, teropavimab; **ZAB**, zinlirvimab.

Baseline Characteristics

	LEN + TAB + ZAB 10 mg/kg (n=16)	LEN + TAB + ZAB 30 mg/kg (n=16)
Median (range) age, years	48 (28–63)	44 (25–59)
Female sex at birth, n (%)	2 (13)	4 (25.0)
Race, n (%) Asian Black White Other	2 (13) 3 (19) 10 (63) 1 (6)	1 (6) 4 (25) 8 (50) 3 (19)
Hispanic or Latinx ethnicity, n (%)	6 (38)	4 (25)
Median (range) weight, kg	88 (59–150)	89 (60–143)
Median (range) CD4 cell count, cells/mL	821 (449–1916)	985 (667–1644)

Efficacy at Week 26


Virologic Outcomes at Week 26 by FDA Snapshot Algorithm

	LEN + TAB + ZAB 10 mg/kg (n=14ª)	LEN + TAB + ZAB 30 mg/kg (n=16)
HIV-1 RNA ≥50 copies/mL, n	3	0
HIV-1 RNA <50 copies/mL, n	11	15
No virologic data in Week 26 window, n	0	1 b

- No participants in the high-dose ZAB group had virologic rebound (HIV-1 RNA ≥50 copies/mL)
 6 months after dosing
- CD4 cell counts remained stable; mean (SD) change from baseline to Week 26:
 - LEN + TAB + ZAB 10 mg/kg: +5 (267) cells/mL
 - LEN + TAB + ZAB 30 mg/kg: -30 (293) cells/mL

^aTwo participants were excluded from the efficacy analysis (did not receive the complete study regimen [participant decision], n=1, protocol violation, n=1). ^bParticipant withdrew from the study after Week 12 (participant decision), with HIV-1 RNA <50 copies/mL at last available visit. **LEN**, lenacapavir; **TAB**, teropavimab; **ZAB**, zinlirvimab.

Participants with Virologic Rebound (HIV-1 RNA ≥50 copies/mL)

HIV-1 RNA by Study Visit

Study group	ZAB 10 mg/kg	ZAB 10 mg/kg	ZAB 10 mg/kg
bNAb susceptibility at screening	TAB and ZAB	ZAB only	TAB only
Pre-existing LEN RAMs at screening	None	None	None
Treatment-emergent drug resistance		None detected	None detected

Participant 1

Participant 2

Participant 3

Participant 3 had acute COVID-19 infection at Week 13, prior to viral rebound

— Only one participant with virologic rebound had documented resistance emergence (to LEN)

^aFor illustrative purposes, viral loads <20 copies/mL (the LLOQ) are shown as 19 copies/mL. ^bDay 1. ^cCommercial resistance testing methods resulted in assay failure due to low plasma viral load; resistance was evaluated using novel techniques (Selzer L, et al. AIDS 2024; Poster WEPEB146). ART, antiretroviral therapy; CA, capsid; LEN, lenacapavir; LLOQ, lower limit of quantification; RAM, resistance-associated mutation; TAB, teropavimab; ZAB, zinlirvimab.

Safety Overview and ADAs

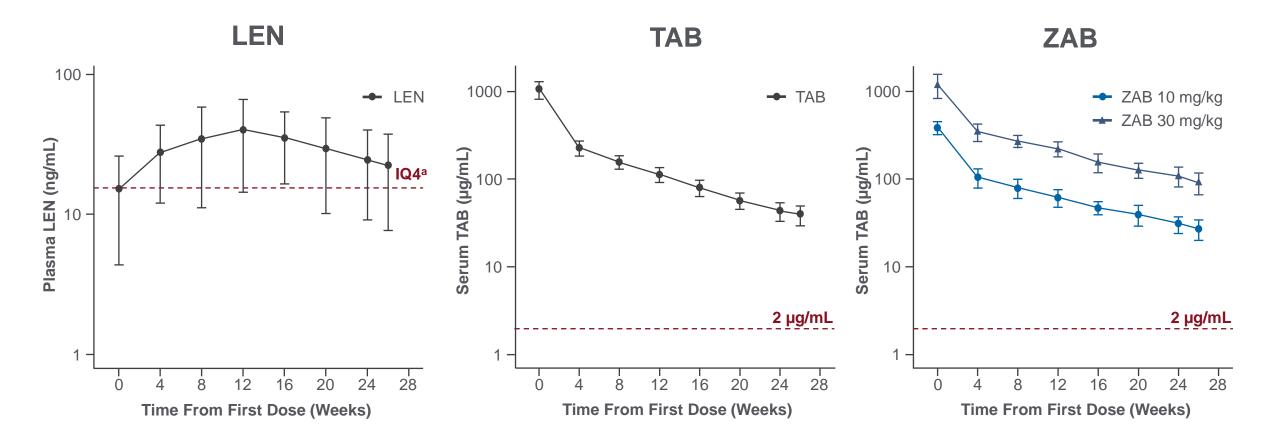
n (%)	LEN + TAB + ZAB 10 mg/kg (n=15ª)	LEN + TAB + ZAB 30 mg/kg (n=16)
Treatment-emergent adverse events (TEAEs)	12 (80)	15 (94)
Grade ≥3	0	2 (13)
Treatment-related TEAEs	10 (67)	12 (75)
Grade ≥3	0	2 (13) ^b
Serious TEAEs	0	0
TEAEs leading to study drug discontinuation	0	0

- One participant (low-dose ZAB group) had an infusion-related reaction (Grade 1 pyrexia) after completing administration of both bNAbs, which resolved without treatment
- Treatment-emergent ADAs against TAB occurred in 6/31 participants, and against ZAB in 6/31 participants
 - ADAs were generally low in titres and did not impact pharmacokinetics, efficacy, or safety

^aOne participant excluded from safety analyses as they did not receive complete study regimen (participant decision). ^bErythema (n=1) and cellulitis (n=1; occurring at LEN injection site, treated with antibiotics).

ADA, anti-drug antibody; bNAb, broadly neutralising antibody; LEN, lenacapavir; TAB, teropavimab; ZAB, zinlirvimab.

Most Common TEAEs


Most common TEAEs (occurring in ≥10% of participants), n (%)	LEN + TAB + ZAB 10 mg/kg (n=15ª)	LEN + TAB + ZAB 30 mg/kg (n=16)
Injection site pain	5 (33)	7 (44)
Injection site induration	2 (13)	7 (44)
Injection site erythema	4 (27)	5 (31)
Injection site nodule	5 (33)	3 (19)
COVID-19	3 (20)	1 (6)
Injection site mass	3 (20)	1 (6)
Upper respiratory tract infection	3 (20)	1 (6)

- Overall, median (IQR) durations of resolved nodules and indurations were:

- Nodules (n=8): 85 (63–194) days
- Indurations (n=8): 246 (158–305) days

^aOne participant excluded from safety analyses as they did not receive complete study regimen [participant decision]. **IQR**, interquartile range; **LEN**, lenacapavir; **TAB**, teropavimab; **TEAE**, treatment-emergent adverse event; **ZAB**, zinlirvimab.

Mean (SD) Drug Concentrations Over Time

- Therapeutic concentrations of LEN, TAB, and ZAB were maintained through Week 26

^a15.5 ng/mL, 4-fold higher than the *in vitro* protein-adjusted 95% effective concentration in MT 4 cells. **IQ4**, inhibitory quotient 4; **LEN**, lenacapavir; **TAB**, teropavimab; **ZAB**, zinlirvimab.

Conclusions

- The long-acting combination of LEN + TAB + ZAB had a favourable safety profile through Week 26, with no difference in safety or tolerability between ZAB dose groups
- All participants who received LEN, TAB, and high-dose ZAB maintained viral suppression through Week 26^a
- These results suggest high treatment efficacy for the combination of LEN, TAB, and high-dose ZAB can be achieved in PWH highly susceptible to one or both bNAbs
 - The higher ZAB dose was selected for an ongoing Phase 2 study (NCT05729568) investigating the efficacy and safety of switching to twice-yearly LEN + TAB + ZAB vs continuing baseline therapy in PWH highly susceptible to both bNAbs

Acknowledgements

- We extend our thanks to the participants and their families
- We would like to thank all participating investigators: Cynthia Brinson, Paul P Cook, Gordon E Crofoot, Edwin DeJesus, Joseph J Eron, Linda Gorgos, Dushyantha Jayaweera, Susan J Little, Anthony Mills, Olayemi Osiyemi, Moti N Ramgopal, Peter J Ruane, Sarah Waldman
- All authors contributed to and approved the presentation; medical writing support was provided by Jessica Woods of Ashfield MedComms (Macclesfield, UK), an Inizio company, and was funded by Gilead Sciences, Inc.
- Correspondence: Paul P Cook, cookp@ecu.edu

Copies of this presentation obtained through QR (Quick Response) and/or text key codes are for personal use only and may not be reproduced without written permission of the authors